Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Med Virol ; 95(1): e28412, 2023 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2173198

RESUMEN

Considering the global trend to confine the COVID-19 pandemic by applying various preventive health measures, preprocedural mouth rinsing has been proposed to mitigate the transmission risk of SARS-CoV-2 in dental clinics. The study aimed to investigate the effect of different mouth rinses on salivary viral load in COVID-19 patients. This study was a single-center, randomized, double-blind, six-parallel-group, placebo-controlled clinical trial that investigated the effect of four mouth rinses (1% povidone-iodine, 1.5% hydrogen peroxide, 0.075% cetylpyridinium chloride, and 80 ppm hypochlorous acid) on salivary SARS-CoV-2 viral load relative to the distilled water and no-rinse control groups. The viral load was measured by quantitative reverse transcription PCR (RT-qPCR) at baseline and 5, 30, and 60 min post rinsing. The viral load pattern within each mouth rinse group showed a reduction overtime; however, this reduction was only statistically significant in the hydrogen peroxide group. Further, a significant reduction in the viral load was observed between povidone-iodine, hydrogen peroxide, and cetylpyridinium chloride compared to the no-rinse group at 60 min, indicating their late antiviral potential. Interestingly, a similar statistically significant reduction was also observed in the distilled water control group compared to the no-rinse group at 60 min, proposing mechanical washing of the viral particles through the rinsing procedure. Therefore, results suggest using preprocedural mouth rinses, particularly hydrogen peroxide, as a risk-mitigation step before dental procedures, along with strict adherence to other infection control measures.


Asunto(s)
COVID-19 , Antisépticos Bucales , Humanos , Antisépticos Bucales/uso terapéutico , SARS-CoV-2 , Peróxido de Hidrógeno , Povidona Yodada/uso terapéutico , Cetilpiridinio/uso terapéutico , Pandemias , Carga Viral , Agua
2.
Biotechnol Genet Eng Rev ; : 1-22, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: covidwho-2037132

RESUMEN

Bacterial co-infections are typically associated with viral respiratory tract infections and pose a significant public health problem around the world. COVID-19 infection damages tissues lining the respiratory track and regulates immune cells/cytokines leading to microbiome dysbiosis and facilitating the area to be colonized by pathogenic bacterial agents. There have been reports of different types of bacterial co-infection in COVID-19 patients. Some of these reports showed despite geographical differences and differences in hospital settings, bacterial co-infections are a major cause of morbidity and mortality in COVID-19 patients. The inappropriate use of antibiotics for bacterial infections, particularly broad-spectrum antibiotics, can also further complicate the infection process, often leading to multi drug resistance, clinical deterioration, poor prognosis, and eventually death. To this end, researchers must establish a new therapeutic approach to control SARS-CoV-2 and the associated microbial coinfections. Hence, the aim of this review is to highlight the bacterial co-infection that has been recorded in COVID-19 patients and the status of antimicrobial resistance associated with the dual infections.

3.
Front Microbiol ; 12: 727455, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1438425

RESUMEN

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) calls for an urgent development of effective and safe prophylactic and therapeutic measures. The spike (S) glycoprotein of severe acute respiratory syndrome-coronavirus (SARS-CoV-2) is a major immunogenic and protective protein and plays a crucial role in viral pathogenesis. In this study, we successfully constructed a synthetic codon-optimized DNA-based vaccine as a countermeasure against SARS-CoV-2, denoted VIU-1005. The design was based on a codon-optimized coding sequence of a consensus full-length S glycoprotein. The immunogenicity of the vaccine was tested in two mouse models (BALB/c and C57BL/6J). Th1-skewed systemic S-specific IgG antibodies and neutralizing antibodies (nAbs) were significantly induced in both models 4 weeks after three injections with 100 µg of the VIU-1005 vaccine via intramuscular needle injection but not intradermal or subcutaneous routes. Such immunization induced long-lasting IgG and memory T cell responses in mice that lasted for at least 6 months. Interestingly, using a needle-free system, we showed an enhanced immunogenicity of VIU-1005 in which lower or fewer doses were able to elicit significantly high levels of Th1-biased systemic S-specific immune responses, as demonstrated by the significant levels of binding IgG antibodies, nAbs and IFN-γ, TNF and IL-2 cytokine production from memory CD8+ and CD4+ T cells in BALB/c mice. Furthermore, compared to intradermal needle injection, which failed to induce any significant immune response, intradermal needle-free immunization elicited a robust Th1-biased humoral response similar to that observed with intramuscular immunization. Together, our results demonstrate that the synthetic VIU-1005 candidate DNA vaccine is highly immunogenic and capable of inducing long-lasting Th1-skewed humoral and cellular immunity in mice. Furthermore, we show that the use of a needle-free system could enhance the immunogenicity and minimize doses needed to induce protective immunity in mice, supporting further preclinical and clinical testing of this candidate vaccine.

4.
Viruses ; 13(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1325787

RESUMEN

Healthcare workers (HCWs) are at high risk for SARS-CoV-2 infection compared to the general population. Here, we aimed to evaluate and characterize the SARS-CoV-2 seropositivity rate in randomly collected samples among HCWs from the largest referral hospitals and quarantine sites during the peak of the COVID-19 epidemic in the city of Jeddah, the second largest city in Saudi Arabia, using a cross-sectional analytic study design. Out of 693 participants recruited from 29 June to 10 August 2020, 223 (32.2%, 95% CI: 28.8-35.8) were found to be confirmed seropositive for SARS-CoV-2 antibodies, and among those 197 (88.3%) had never been diagnosed with COVID-19. Seropositivity was not significantly associated with participants reporting COVID-19 compatible symptoms as most seropositive HCW participants 140 (62.8%) were asymptomatic. The large proportion of asymptomatic SARS-CoV-2 cases detected in our study demands periodic testing as a general hospital policy.


Asunto(s)
COVID-19/epidemiología , SARS-CoV-2/inmunología , Adulto , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/inmunología , Infecciones Asintomáticas , COVID-19/inmunología , COVID-19/virología , Prueba Serológica para COVID-19 , Chlorocebus aethiops , Estudios Transversales , Femenino , Personal de Salud/estadística & datos numéricos , Humanos , Control de Infecciones , Masculino , Persona de Mediana Edad , Cuarentena , Derivación y Consulta , Arabia Saudita/epidemiología , Estudios Seroepidemiológicos , Células Vero
5.
Pathogens ; 9(12)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1006937

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to spread globally. Although several rapid commercial serological assays have been developed, little is known about their performance and accuracy in detecting SARS-CoV-2-specific antibodies in COVID-19 patient samples. Here, we have evaluated the performance of seven commercially available rapid lateral flow immunoassays (LFIA) obtained from different manufacturers, and compared them to in-house developed and validated ELISA assays for the detection of SARS-CoV-2-specific IgM and IgG antibodies in RT-PCR-confirmed COVID-19 patients. While all evaluated LFIA assays showed high specificity, our data showed a significant variation in sensitivity of these assays, which ranged from 0% to 54% for samples collected early during infection (3-7 days post symptoms onset) and from 54% to 88% for samples collected at later time points during infection (8-27 days post symptoms onset). Therefore, we recommend prior evaluation and validation of these assays before being routinely used to detect IgM and IgG in COVID-19 patients. Moreover, our findings suggest the use of LFIA assays in combination with other standard methods, and not as an alternative.

6.
Viruses ; 12(12)2020 12 04.
Artículo en Inglés | MEDLINE | ID: covidwho-966996

RESUMEN

The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2, continues to spread globally with significantly high morbidity and mortality rates. Antigen-specific responses are of unquestionable value for clinical management of COVID-19 patients. Here, we investigated the kinetics of IgM, IgG against the spike (S) and nucleoproteins (N) proteins and their neutralizing capabilities in hospitalized COVID-19 patients with different disease presentations (i.e., mild, moderate or severe), need for intensive care units (ICU) admission or outcomes (i.e., survival vs death). We show that SARS-CoV-2 specific IgG, IgM and neutralizing antibodies (nAbs) were readily detectable in almost all COVID-19 patients with various clinical presentations. Interestingly, significantly higher levels of nAbs as well as anti-S1 and -N IgG and IgM antibodies were found in patients with more severe symptoms, patients requiring admission to ICU or those with fatal outcomes. More importantly, early after symptoms onset, we found that the levels of anti-N antibodies correlated strongly with disease severity. Collectively, these findings provide new insights into the kinetics of antibody responses in COVID-19 patients with different disease severity.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , Inmunidad Humoral , Inmunoglobulina G/sangre , Anticuerpos Neutralizantes/sangre , COVID-19/diagnóstico , Hospitalización , Humanos , Inmunoglobulina M/sangre , Cinética , Estudios Longitudinales , Pruebas de Neutralización , Proteínas de la Nucleocápside/inmunología , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/inmunología
7.
Sci Rep ; 10(1): 16561, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: covidwho-834906

RESUMEN

As the Coronavirus Disease 2019 (COVID-19), which is caused by the novel SARS-CoV-2, continues to spread rapidly around the world, there is a need for well validated serological assays that allow the detection of viral specific antibody responses in COVID-19 patients or recovered individuals. In this study, we established and used multiple indirect Enzyme Linked Immunosorbent Assay (ELISA)-based serological assays to study the antibody response in COVID-19 patients. In order to validate the assays we determined the cut off values, sensitivity and specificity of the assays using sera collected from pre-pandemic healthy controls, COVID-19 patients at different time points after disease-onset, and seropositive sera to other human coronaviruses (CoVs). The developed SARS-CoV-2 S1 subunit of the spike glycoprotein and nucleocapsid (N)-based ELISAs not only showed high specificity and sensitivity but also did not show any cross-reactivity with other CoVs. We also show that all RT-PCR confirmed COVID-19 patients tested in our study developed both virus specific IgM and IgG antibodies as early as week one after disease onset. Our data also suggest that the inclusion of both S1 and N in serological testing would capture as many potential SARS-CoV-2 positive cases as possible than using any of them alone. This is specifically important for tracing contacts and cases and conducting large-scale epidemiological studies to understand the true extent of virus spread in populations.


Asunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Infecciones por Coronavirus/diagnóstico , Proteínas de la Nucleocápside/inmunología , Neumonía Viral/diagnóstico , Seroconversión , Pruebas Serológicas/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Betacoronavirus/genética , COVID-19 , Estudios de Cohortes , Infecciones por Coronavirus/virología , Proteínas de la Nucleocápside de Coronavirus , Reacciones Cruzadas , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Persona de Mediana Edad , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Pandemias , Fosfoproteínas , Neumonía Viral/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2 , Sensibilidad y Especificidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA